前言
在用户画像标签体系建设的过程中,大部分标签都是以规则映射的方式构建,当规则难以梳理时,可以考虑用聚类模型进行划分,再用决策树的方式输出规则,这里仅简单分享,欢迎交流~
示例
确定目的
对用户消费行为进行划分客群(这里不使用RFM模型)
特征选择
- 当月各消费区间消费频次
- 当月消费均值
- 当月消费方差
- 当月日消费频次
- 其他
预估聚类趋势
预估聚类趋势使用的霍普金斯统计量,这里不再赘述, 可直接参考之前的博客:https://blog.csdn.net/Totoro1745/article/details/112132472
聚类(仅以K-means示例)
import pandas as pd
import matplotlib.pyplot as plt
data = pd.read_csv("data.csv")
SSE = []
SCORE = []
for i in range(2, 10):
est = KMeans(n_clusters=i)
est.fit(var_raw)
sse_value = est.inertia_
SSE.append(sse_value)
score_value = silhouette_score(raw, est.labels_, metric='euclidean')
SCORE.append(score_value)
print(i, time.strftime('%H:%M:%S', time.localtime()), sse_value, score_value)
手肘法确定聚类个数
x = range(2, 10)
plt.xlabel('k')
plt.ylabel('SSE')
plt.plot(x, SSE, 'o-')
plt.show()
# 确定后以该聚类个数保存模型
基于决策树梳理规则并定义标签
from sklearn.cross_validation import train_test_split
from sklearn.tree import DecisionTreeClassifier
import pydotplus
from sklearn import tree
from IPython.display import Image
import graphviz
from sklearn.metrics import classification_report, roc_auc_score
import os
os.environ["PATH"] += os.pathsep + 'D:/Python35/graphviz/bin'
data = pd.re_csv("result.csv")
x = data[data.columns[:-1]]
y = data[data.columns[-1]]
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)
clf = DecisionTreeClassifier(max_depth=3)
clf = clf.fit(x_train, y_train)
# 训练效果
y_pre_train = clf.predict(x_train)
y_score_train = clf.predict_proba(x_train)
print(classification_report(y_true=y_train, y_pred=y_pre_train))
# 测试效果
y_pre = clf.predict(x_test)
y_score = clf.predict_proba(x_test)
print(classification_report(y_true=y_test, y_pred=y_pre))
# 以四个类为例
with open('tree.dot','w') as f:
f = tree.export_graphviz(clf, out_file=f)
dot_data = tree.export_graphviz(clf, feature_names=x_train.columns, class_names=["A", "B", "C", "D"],
filled=True, rounded=True, special_characters=True, out_file='tree.dot')
with open("tree.dot") as f:
dot_graph = f.read()
graph = pydotplus.graph_from_dot_data(dot_graph)
print(graph)
graph.write_png("model.png")